
1
Do what matters

Go Native
Making Optimal Use of
Native System Functionality
LAWRENCE MATUSEK

2

Introduction to going native
“I have been implementing packaged business systems
(ERP, CRM, PLM, etc.) for more than 20 years. Over that time,
I have seen some companies implement very successfully, and
many others who struggle mightily. Why the difference?

When I think about the most critical success factor, it is clearly,
making optimal use of native system functionality to address
the widest range of business needs and opportunities.

They then make limited enhancements to gain or secure
competitive advantage. In a nutshell, we say to GO NATIVE!

This eBook serves as an introductory guide to leveraging native
functionality in packaged business systems. I will explore challenges
and benefits of implementing these systems the way they were
designed to be implemented.”

3

The end can be precipitated by internal influences… like a company outgrowing its
system’s capability or perhaps the merger of two companies needing to consolidate
operations into one system. With time, the end will inevitably be precipitated by
continual architectural advances in hardware and software or ever increasing
expectations around user experience and system features or capabilities.

Eventually, your company will decide to replace each business system with a new
one. “How should the new system be configured to meet your company’s current
business requirements, just like our legacy system?” you say, “After all, we know that
it works. We have been through all the requirements that led to the processes that
led to the system implemented and refined over the years. Our legacy system is the
embodiment of how our business runs.”

I have been in a discussion like that many times. First of all, a legacy system is the
embodiment of how a business *ran*. Over many years of usage, the business’
requirements, processes, and system can become incorrectly viewed as one and the
same. In fact, when the legacy system was implemented, your processes were shaped
in part by that system’s capabilities and limitations. When replacing it, you must take
a fresh look at your business requirements and determine what processes are now
possible with the latest generation of business system functionality.

“At some point, every business system
reaches the end of its useful life cycle.”

This is where you must be on the lookout for the
“legacy intransigents”.“If you always do what you always did,

you will always get what you always got.”
- Albert Einstein

Section 1 | One

Avoid the Legacy Trap.

4

Some people become quite emotionally attached to the way that their legacy
system works. They find comfort in the familiar, the tried and true. They know where
everything is and how it works. New systems are unfamiliar and rather intimidating to
them. They view their legacy system through rose colored glasses. Long gone are their
memories of when the legacy system *was* the new system, how its implementation
was just as challenging, and when it wasn’t quite the panacea that it is today.

Be mindful not to fall into an all too familiar trap of trying to use a patch-work
of workarounds and "fixes' that only give you a perceived "new and improved"
version of the same legacy system. This outcome is actually the worst of both worlds.
You end up with a highly customized new system that isn’t quite as quick or easy to
use as legacy was, and it is more difficult and costly to maintain. Worse still, most of
the new capabilities and features that prompted the purchase and implementation of
the new system were likely not used because they did not exist in the legacy system.
In my experience, the most egregious examples of “falling into the legacy trap”
occur in product configurator implementations

For example, I have been a solution architect or consultant in over 100 SAP ERP variant
configuration projects. Granted most of these were small projects and my role was
mainly design, but nevertheless, I have seen too many instances of customers trying to
force fit legacy configurator constructs and logic into SAP’s configurator.

The resulting models typically have so many cryptic rules and design
obscurities that it becomes quite difficult for anyone not deeply involved in the
implementation to gain a comprehensive understanding of the overall solution.

First and foremost, learn the architecture, capabilities, and native
functionality of your new system so that you can make informed
implementation decisions. Identify your best technical and functional people
and give them ample time to explore, experiment, and learn. Give them access
to experienced consultants with deep domain and/or system experience. Keep
your team small while ambiguity is high.

Start with a proof of concept or pilot project where you can afford to go
through the necessary cycles of learning. This isn’t “throw away” work; the time
you will save and missteps you will avoid down the road are truly invaluable.

Your new system should enable you to take
your business to the next level.

So if legacy isn’t the path to the future,
then what should you do?

In the next chapter, I will talk about the dangers of needlessly
enhancing a new system instead of leveraging its advanced native
functionality simply because the necessary learning described
above did not happen. This “do-it yourself” approach occurs all
too often and leads to an array of problems. In fact, a significant
portion of our business has come from rescuing such failing or
failed implementations. All other things being equal, I would
gladly give up this “rescue” business in favor of helping companies
do it right the first time around.

5

In the context of business system implementation, it suggests that at least 80% of
your business needs should be addressed by the native functionality of your business
system while the other 20% or so must be addressed through customizations and/or
manual processing.

Whatever you do, you must resist the temptation to develop a custom solution before
fully investigating native alternatives. All too often I have seen customers develop
custom reports, transactions, etc. when native functionality would have provided a
better and more extensible solution.

Most everyone is familiar with the
“80/20 rule”.

Section 2 | Two

Resist the Temptation
to Optimize

Hopefully your business system has obvious native solutions for most of
your needs, but what should you do when a business need arises without
an obvious native solution?

“Just because you can do something
doesn’t mean you should.”

6

The first reason is typically the more difficult to overcome. It can be avoided
with leadership from solution architects who have a deep understanding of the
business system architecture and its design philosophies PLUS the skill to match
business needs with native system capabilities (i.e. a fit/gap analysis). These
individuals possess several key characteristics and abilities like the following:

Pattern Recognition:

e.g. this need is similar to one that was solved using a certain
native functionality

Resourcefulness:

e.g. finding ways to use leverage native functionality in creative
ways or combinations

Gap Identification:

i.e. determining when a need cannot or should not be met with
native functionality

I have seen two general reasons why customers have developed
a custom solution instead of leveraging a native one....

1 Lack of detailed knowledge about the native
functionality (Or how to use it)

“The system doesn’t do it.”

Where is your analysis and proof? Or is it more accurate to say
“I don’t know how to do it in the system”?

“We must have this report.”

Legacy systems often need custom reports because they lack native reports and
transactions to see data that most modern systems naively provide. Another
key metric is how often a given custom report is actually used. You might be
surprised to learn how infrequently some “must have” reports are generated.

“I have to see it like this.”

Have you tried to view it the native way? Can you quantify the additional effort
or risk for using the native transactions instead? By the way,
you will need that to justify a customization.

“We have always done it this way.”

This is perhaps the quintessential excuse. Unless your business did not exist
before the computer age, it is probably more accurate to say
“I have always done it this way”. Or are you saying “a customization.

The second reason is usually more of a corporate culture or training
challenge. Many people have an inclination to “reinvent the wheel” or else
that phrase would not be so commonly used. This mentality is rather self-
defeating when implementing a business system. It can result in a lot of
unnecessary effort and expense. I have seen people offer an array of excuses
for justifying such customizations – see some examples below along with
my typical rebuttal.

2 Perception that a given custom solution is easier
to implement or use than the native one

Natural Curiosity:

e.g. what does a given feature do and in what situations would
one want to use it?

Translation:

i.e. connecting business needs to functionality even though
terminology may be different

7

Despite the question of why you would want to (re)build functionality that you
have already licensed AND pay a vendor to maintain, there is another point you
should consider.

Improperly implemented customizations can inadvertently limit your ability to use
advanced native functionality or upgrades in the future.

Customizations are often designed and
tested to work with only the SUBSET
of functionality that your company has
implemented. All native functionality
is designed to be fully integrated and
supported across the entire system with
few limitations.

A significant portion of our business
comes from “retrofit projects” in which
we implement or properly re-implement
native functionality in situations where
the expected ROI for a business system
was not initially achieved. In such
projects, existing customizations are the
first thing that we evaluate to determine
the following.

•	 Which customizations can be
reduced or eliminated using native
functionality? The more the better.

•	 Will newly implemented native
functionality work properly with
existing customizations? We
routinely find poorly implemented
customizations that prevent native
functionality from working properly.
They must be corrected or rewritten.

•	 Will existing customizations
continue to work with newly
implemented native functionality?
This is usually the largest and most
difficult effort to quantify because
many existing customizations can be
complex, improperly scoped, and/or
understood by only their
original authors.

8

For those who are not familiar with “the tube” (i.e. the subway) in London, you may
be wondering about the title of this chapter. “Mind the gap” is a warning repeated to
passengers to take caution while crossing the gap between the station platform and
train car. Under normal conditions, the gap should be small and easy to cross but
you must be careful to avoid twisting your ankle as you step in or out.

I chose this title because it is critically important to “mind the gap” when customizing
business systems. No business system can or should attempt to address every single
business nuance with native functionality. Well architected systems typically do a good
job of providing a very robust functional framework that anticipates where customers
will need the ability to provide custom logic in the form of enhancements.

Enhancements are used to close the small functional gaps that you encounter during
your blueprinting or realization activities. They are not intended nor should they
generally be used to fill gaping functional holes. If you find many of such holes during
the fit/gap analysis in your software selection process, then you are likely evaluating a
system or type of system that is a bad fit for your business needs.

Mind the gap! But how?

When customizing a business system, you
should strive to keep your customizations
as succinct as possible so that they work
reliably through future system upgrades.

The theme of this chapter is how to leverage
native functionality to the greatest extent
possible, and then how to customize it to
achieve competitive advantage.

Mind The Gap

 For more details

Section 3 | Three

9

“Everything should be as
simple as possible, but
not simpler.”
- Albert Einstein

There is a lot of wisdom in this quotation. My
corollary is that you can find 100 or more ways to
solve any given problem – but probably only a few of
those ways are good ways – and the simplest way is
usually the best way.

Paradoxically simple solutions can often
be the most difficult to find.
One of my favorite anecdotes is about a tractor
trailer that was driving under a bridge and became
stuck because of insufficient clearance. The trailer
was so tightly jammed that it could not be moved.
Engineers and experts were called to the site to
figure out how to free the truck. They devised all
sorts of elaborate plans to raise the bridge, cut the
trailer top off, dig under the truck, etc. A child walked
up to the scene and asked “why don’t you just let the
air out of the truck’s tires?”

As in the example, I instinctively know when I have
found the simplest and most elegant solution to a
problem. It just feels right and makes perfect sense.
So how could something be simpler than possible?
That just means that you didn’t entirely solve the
problem but instead gave a simplistic solution
that has limitations and didn’t fully meet
the requirements.

In most cases, this is a less than satisfactory outcome.
You shouldn’t “dumb down” a problem just because
it is difficult to solve, however it is always prudent to
ask whether an elaborate solution is really required
and whether it will actually be used as expected.
quantify because many existing customizations can
be complex, improperly scoped, and/or understood
by only their original authors.

When you determine that you should
or must enhance your business system,
how do you know if you have done so
appropriately?

I have seen a lot of enhancements in my experience –
some good, many bad. I use the following three simple
rules of thumb to evaluate enhancements.

Rule: IMHO, the best customizations generally have a
few lines of intuitive executable code. In addition, they
have lots of comments that explain how and why the
customization will work in the necessary context (and
how it otherwise intentionally fails or is bypassed).

How many lines of code and
how many lines of comments?Question

Rule: The best customizations can organize native
functions in a specialized manner or process. This
approach effectively extends native functionality. On
the other hand, it is sometimes necessary to directly
query the system database when no API is provided for
a required function. Be careful to fully understand the
table keys and relationships in such queries.

How many database
queries vs. API calls?Question

Rule: Business systems are designed to be customized
within limited scopes and using specific techniques.
The greatest danger in enhancements is that they can
introduce unexpected or unpredictable behavior into
normal system operation

Does it stay
“between the lines”?Question

9

10

While this may seem like a smart time saver at first, poorly implemented
customizations can inadvertently limit your ability to use advanced native
functionality or system upgrades in the future. Ideally your enhancements will
work properly with the full range of native functionality, but if not then at least
ensure that they gracefully trap situations beyond their original design and can
be extended to support future needs

Perhaps I can illustrate by continuing my carpentry analogy with this quotation:

In my experience, quality training for enhancing business systems is hard to
find. The training that is available is all too often focused on the mechanics
of the functionality, i.e. definitions and explanations of features and functions
and how they work. Think of the analogy of learning about the various tools
in a toolbox – does that training make you a skilled carpenter? Not by a long
shot. I can personally attest to that fact. Both of my grandfathers were skilled
carpenters. They showed me how to use every tool, but let’s just say that my
carpentry would never be mistaken for expert craftsmanship. While learning the
mechanics of a business system is an obvious place to start, that shouldn’t be the
end game. In practice, I have seen far too many customers send their team to
one or more weeks of “mechanics” training and then have them return to design
and implement enhancements for addressing complex business needs. You can
probably guess how this typically works out.

Perhaps the worst thing you can do is learn a few example enhancements and
then start trying to apply those design patterns to every enhancement need that
comes along. We call that the “blunt instrument surgery” or “bull in the china
shop” approach. Implementing good enhancements requires a lot of knowledge
and finesse. You should consider tapping your colleagues or user groups for ideas
and experience in closing similar functional gaps. Chances are that your company
is not the first or only to face a given customization challenge.

In my opinion, on the job training is usually the best and only way to really
master the design of business system enhancements, but not all experience
counts equally.

Make sure that someone claiming “ten years of experience” truly has ten years of
broad and progressively more challenging design work (as opposed to repeating
a year’s worth of the same type and complexity of design work ten times).

How does one learn to
implement good enhancements?

Be careful about designing and testing enhancements
to work with only the subset of functionality that your
company has implemented so far.

Perhaps the worst thing you can do is learn a few
example enhancements and then start trying to apply
those design patterns to every enhancement need
that comes along.

“If all you have is a hammer, everything looks
like a nail.” - Bernard Baruc

11

North America
Seattle
Phone +1 206 239 5600
America@avanade.com

South America
Sao Paulo
AvanadeBrasil@avanade.com

Asia-Pacific
Australia
Phone +61 2 9005 5900
AsiaPac@avanade.com

Europe
London
Phone +44 0 20 7025 1000
Europe@avanade.com

About Avanade
Avanade is the leading provider of innovative digital and cloud services, business solutions and design-led experiences on the Microsoft ecosystem. Every day, our professionals bring
bold, fresh thinking combined with technology, business and industry expertise to help make a genuine human impact on our clients, their customers and their employees.
We are the power behind the Accenture Microsoft Business Group, helping companies to engage customers, empower employees, optimize operations and transform products,
leveraging the Microsoft platform. Avanade has 60,000 professionals in 26 countries, bringing clients our best thinking through a collaborative culture that honors diversity and reflects
the communities in which we operate. Majority owned by Accenture, Avanade was founded in 2000 by Accenture LLP and Microsoft Corporation.
Learn more at www.avanade.com.

Do what matters

